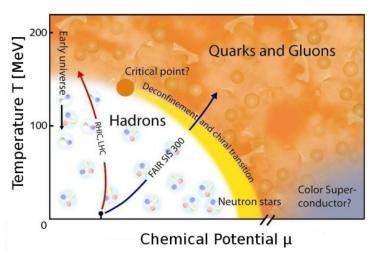
Correlation functions in Landau-gauge QCD

RBRC Workshop QCD in Finite Temperature and Heavy Ion Collisions


Nils Strodthoff, LBNL In collaboration with A. Cyrol, M. Mitter and J. Pawlowski

QCD Phase Structure

Aim: Quantitative understanding of the phase structure of QCD

Phase structure at large chemical potentials largely unknown due to **sign problem** in lattice QCD...

adapted from GSI

Quantitative understanding requires first-principle approaches

- Lattice QCD
- Functional approaches
 - ✓ Complementary to the lattice
 - ✓ No sign problem
 - ✓ Calculation of realtime observables

Functional Approaches

- Dyson-Schwinger equations (DSE)
- n-particle irreducible methods (nPI)
- Functional Renormalization Group (FRG)

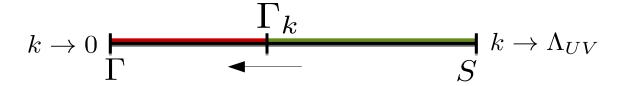
use relations between off-shell Green's functions

Functional Approaches

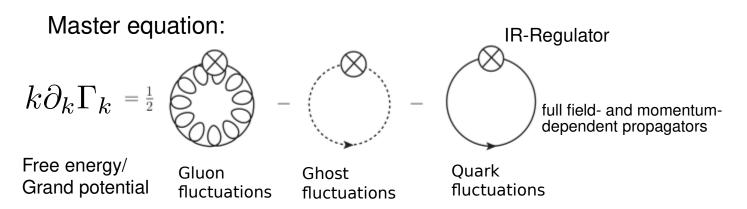
- Dyson-Schwinger equations (DSE)
- n-particle irreducible methods (nPI)
- Functional Renormalization Group (FRG)

use relations between off-shell Green's functions

Top-down approach: fQCD collaboration

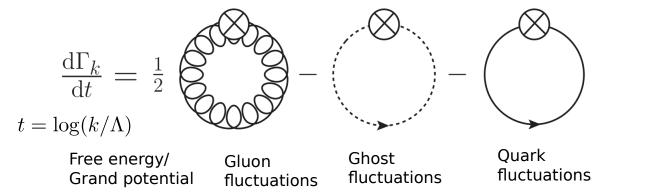

- J. Braun, L. Corell, A. K. Cyrol, W.-J. Fu, M. Leonhardt, M. Mitter,
- J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink

Quantitative continuum approach to QCD in the FRG framework

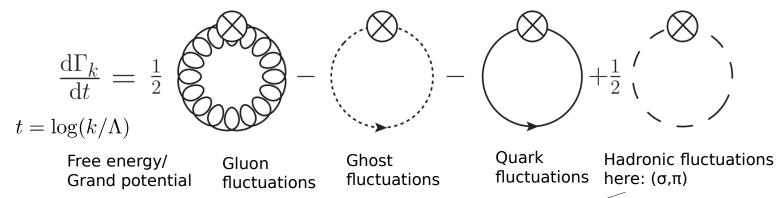

- ✓ No phenomenological input
- ✓ Input parameters: fundamental parameters of QCD.

Functional RG for QCD

Spirit of Wilson RG: Calculate full quantum effective action by integrating fluctuations with momentum k

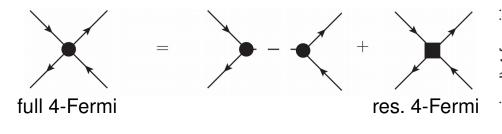


Functional Renormalization Group (FRG)

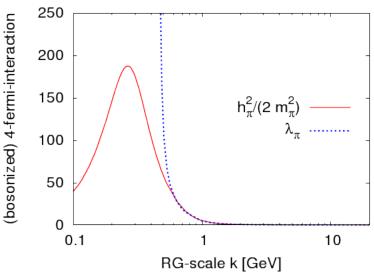


+flow equations for n-point functions via functional differentiation

Dynamical Hadronization


Dynamical Hadronization

Dynamical hadronization


Store resonant 4-Fermi structures in terms of effective mesonic interactions

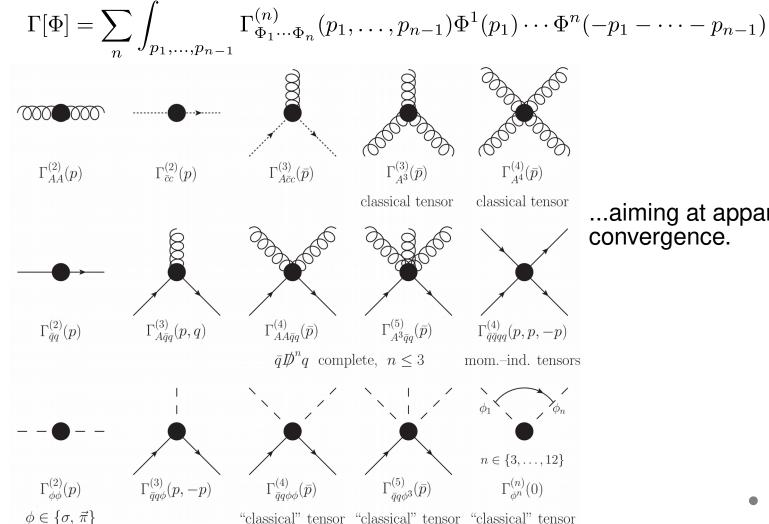
Gies, Wetterich Phys.Rev. **D65** (2002) 065001

- Effective models incorporated
 - right cf. talks of J. Eser and Z. Szép
 - initial conditions determined by QCD-flows

Efficient bookkeeping no double counting

Vertex Expansion in QCD

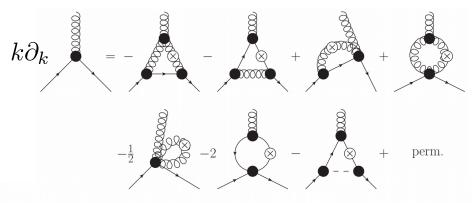
Perturbative relevance counting no longer valid:

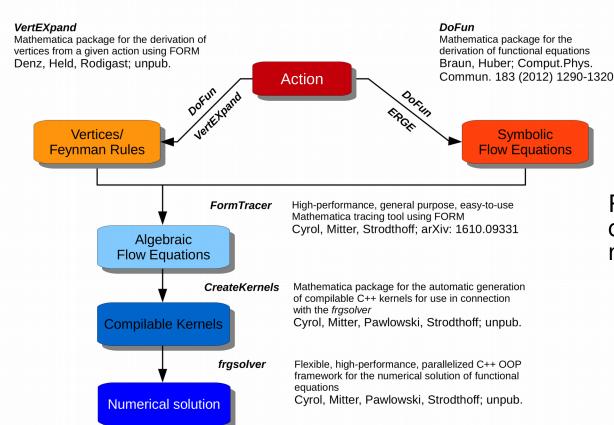

- Requires non-perturbative expansion schemes
- Here: Vertex expansion in terms of 1PI vertex functions

$$\Gamma[\Phi] = \sum_{n} \int_{p_1, \dots, p_{n-1}} \Gamma_{\Phi_1 \dots \Phi_n}^{(n)}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \dots \Phi^n(-p_1 - \dots - p_{n-1})$$

Vertex Expansion in QCD

Perturbative relevance counting no longer valid:


- Requires non-perturbative expansion schemes
- Here: Vertex expansion in terms of 1PI vertex functions


...aiming at apparent convergence.

Towards 1-Click QCD

e.g. quark-gluon vertex equation:

self-consistent solution

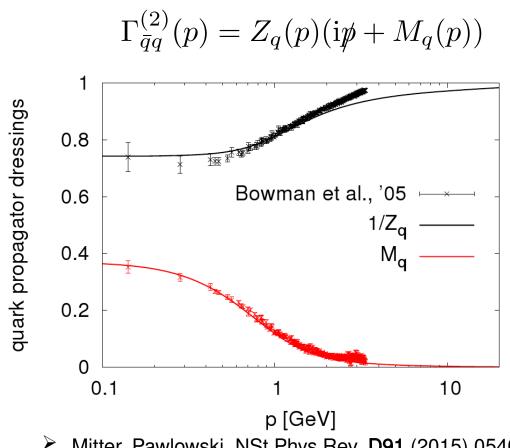
Requirement for dedicated computer-algebraic and numerical tools

YM Propagators

Self-consistent solution of the system of transversal 2-,3- and 4-point functions

Cyrol, Fister, Mitter, Pawlowski, NSt Phys.Rev. D94 (2016) no.5, 054005

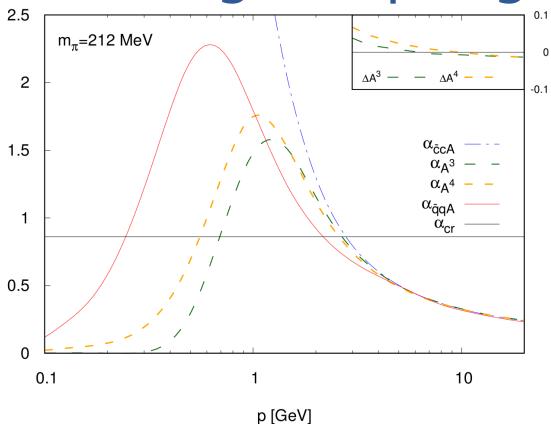
$$[\Gamma_{A^2}^{(2)}]_{ab}^{\mu\nu}(p) = Z_A(p)p^2\Pi_T^{\mu\nu}(p)\delta_{ab} \qquad [\Gamma_{\bar{c}c}^{(2)}]_{ab}(p) = Z_c(p)p^2\delta_{ab}$$


$$[\Gamma_{A^2}^{(2)}]_{ab}^{\mu\nu}(p) = Z_c(p)p^2\delta_{ab}$$

$$[\Gamma_{\bar{c}c}^{(2)}]_{ab}(p) = Z_c(p)p^2\delta_{ab}$$

- Confinement from correlation functions:
 - Fister, Pawlowski, Phys.Rev. **D88** (2013) 045010
 - Braun, Gies, Pawlowski, Phys.Lett. B684 (2010) 262-267
- Finite T results in preparation
 - Cyrol, Mitter, Pawlowski, NSt in prep

Quenched Quark Propagator


From the full matter system using quenched gluon propagator as only input

Very good agreement with (quenched) lattice results!

Mitter, Pawlowski, NSt Phys.Rev. D91 (2015) 054035

Running Couplings & STI

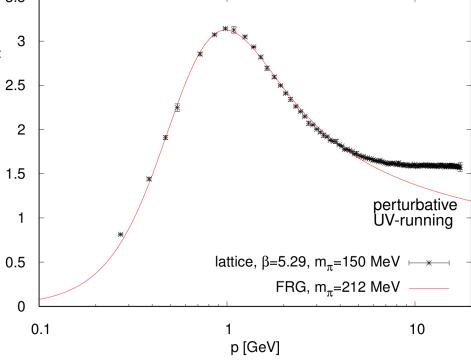
$$\alpha_{\bar{c}cA}(\bar{p}) = \frac{1}{4\pi} \frac{\left(\lambda_{\bar{c}cA}^{(1)}(\bar{p})\right)^2}{Z_A(\bar{p}) Z_c^2(\bar{p})},$$

$$\alpha_{A^3}(\bar{p}) = \frac{1}{4\pi} \frac{\left(\lambda_{A^3}^{(1)}(\bar{p})\right)^2}{Z_A^3(\bar{p})} ,$$

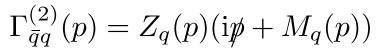
$$\alpha_{A^4}(\bar{p}) = \frac{1}{4\pi} \frac{\lambda_{A^4}^{(1)}(\bar{p})}{Z_A^2(\bar{p})}.$$

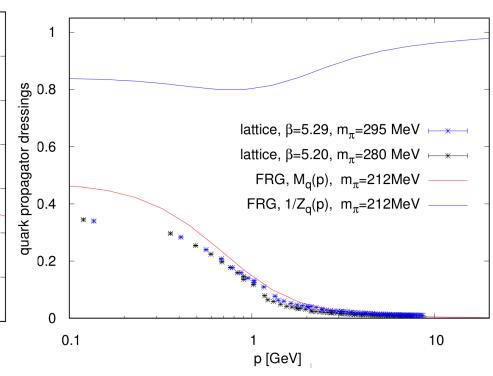
$$\alpha_{\bar{q}qA}(\bar{p}) = \frac{1}{4\pi} \frac{\left(\lambda_{\bar{q}qA}^{(1)}(\bar{p})\right)^2}{Z_A(\bar{p}) Z_q^2(\bar{p})}.$$

- Chiral symmetry breaking very sensitive to correct semi-pert. running
- Present solution: constrain classical tensor structure by **Slavnov-Taylor identity** in the semi-perturbative regime $\bar{p} \geq \Lambda_{\rm STI}$ Davydychev, P. Osland, and L. Saks (2001)


$$\lambda_{\bar{q}qA}^{(9)}(\bar{p}) = \frac{Z_q(\bar{p})}{Z_c(\bar{p})} \left[\lambda_{cqQ_q}^{(1)}(\bar{p}) - \frac{3}{2} \, \bar{p}^2 \, \lambda_{cqQ_q}^{(4)}(\bar{p}) \right]$$

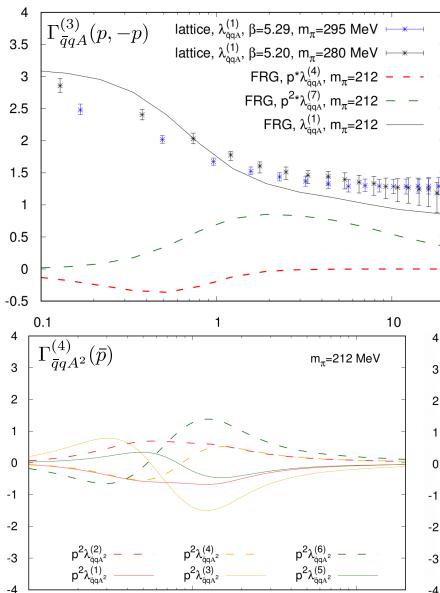
long. proj. class. quark-gluon vertex


quark-ghost scattering kernel


Unquenched Propagators

$$[\Gamma_{A^2}^{(2)}]_{ab}^{\mu\nu}(p) = Z_A(p)p^2\Pi_T^{\mu\nu}(p)\delta_{ab}$$
3.5

- Cyrol, Mitter, Pawlowski, NS in prep
- Lattice: Sternbeck et al PoS LATTICE2012, 243 (2012)

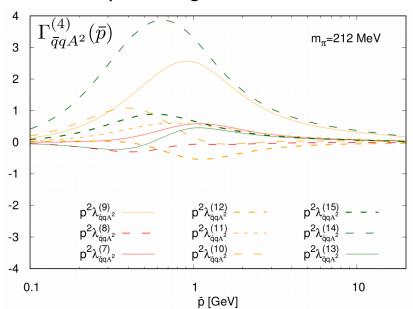


- Cyrol, Mitter, Pawlowski, NS in prep
- Lattice: Oliveira et al 1605.09632

Still to be done: proper scale-matching to the lattice (curvature vs. pole mass)

Quark-Gluon Interactions

10


p̄ [GeV]

0.1

Three quantitatively important tensor structures

ch. sym.:
$$\mathcal{T}^{(1)}_{\overline{q}qA} = -\mathrm{i}\gamma^{\mu}$$

$$\mathcal{T}^{(7)}_{\overline{q}qA} = -\tfrac{\mathrm{i}}{2} [\not \! p,\not \! q] \gamma^{\mu}$$
 ch. sym. br.:
$$\mathcal{T}^{(4)}_{\overline{q}qA} = (\not \! p+\not \! q) \gamma^{\mu}$$

- Full (3d) momentum resolution required for quantitative accuracy
- First direct calculation of the 2-quark-2-gluon vertex

Summary

FQCD, a quantitative continuum approach to QCD

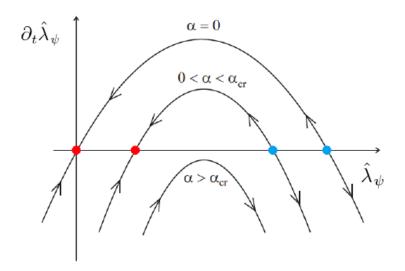
- ✓ Quenched QCD, YM Theory,...
- Unquenched QCD as a prerequisite for finite T and mu

Unquenched QCD

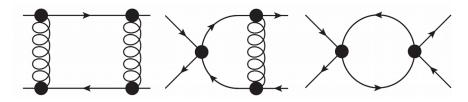
- ☐ First self-consistent solution of the full system
- Correct semi-perturbative running crucial for quantitative accuracy

Stay tuned...

- ☐ Finite temperature (YM)
- Directly calculated spectral functions
 - > NSt 1611.05036
 - Pawlowski, NSt Phys.Rev. **D92** (2015) 9, 094009
 - > Tripolt, NSt, von Smekal, Wambach Phys. Rev. D89 (2014) 034010...
- ☐ Transport coefficients
 - Christiansen, Haas, Pawlowski, NSt PRL 115 (2015) 11, 112002
- Bound state properties
- ч ...


Thank you for your attention!

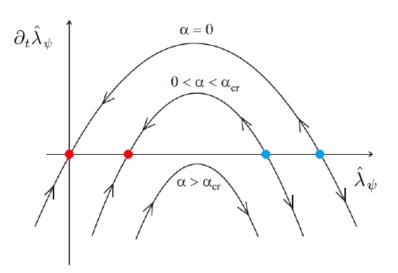
Backup


Chiral symmetry breaking

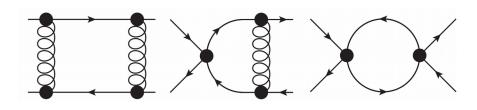
χSB <-> resonance in 4-quark interaction (pion pole)

β-function:

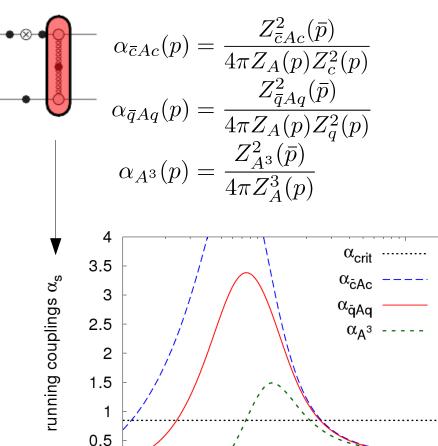
$$k\partial_k \hat{\lambda}_{\psi} = (d-2)\hat{\lambda}_{\psi} - a\hat{\lambda}_{\psi}^2 - b\hat{\lambda}_{\psi}g^2 - cg^4$$



Review: Braun J.Phys. **G39** (2012) 033001

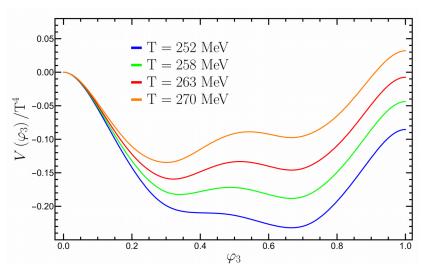

Chiral symmetry breaking

χSB <-> resonance in 4-quark interaction (pion pole)

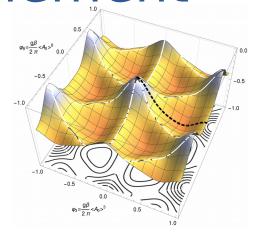

β-function:

$$k\partial_k \hat{\lambda}_{\psi} = (d-2)\hat{\lambda}_{\psi} - a\hat{\lambda}_{\psi}^2 - b\hat{\lambda}_{\psi}g^2 - cg^4$$

Review: Braun J.Phys. **G39** (2012) 033001



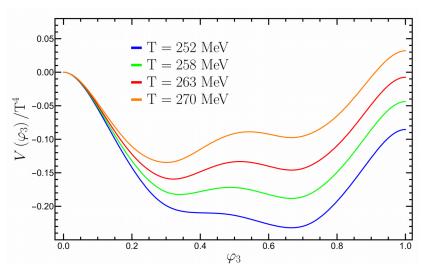
p [GeV]


10

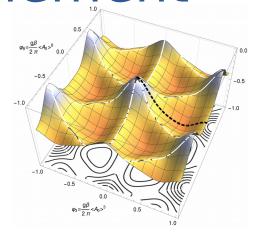
0.1

$V(\langle A_0 \rangle)$ from YM propagators

$$L(\langle A_0 \rangle)$$


Confined:

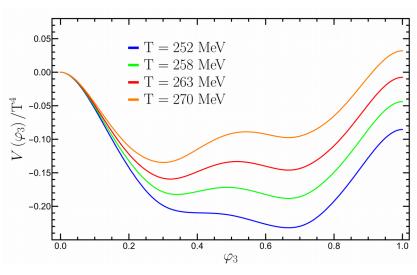
$$\bar{\varphi}_3 = \frac{2}{3}$$


$$L(\bar{\varphi}_3, 0) = 0$$

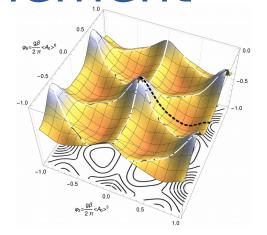
- Pawlowski, Scherzer, Strodthoff, Wink in prep.
- Herbst, Luecker, Pawlowski, (2015), 1510.03830
- Fister, Pawlowski, Phys. Rev. D88 045010 (2013)
- Braun, Gies, Pawlowski, Phys.Lett. B684 (2010)

$V(\langle A_0 \rangle)$ from YM propagators

$$L(\langle A_0 \rangle)$$


Confined:

$$\bar{\varphi}_3 = \frac{2}{3}$$


$$L(\bar{\varphi}_3, 0) = 0$$

- Pawlowski, Scherzer, Strodthoff, Wink in prep.
- Herbst, Luecker, Pawlowski, (2015), 1510.03830
- Fister, Pawlowski, Phys. Rev. D88 045010 (2013)
- Braun, Gies, Pawlowski, Phys.Lett. B684 (2010)

$V(\langle A_0 \rangle)$ from YM propagators

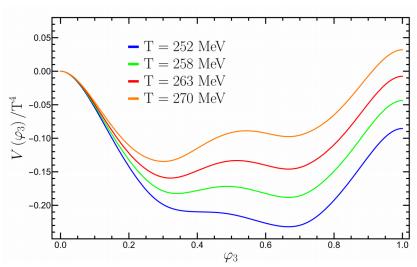
$$L(\langle A_0 \rangle)$$

Confined:

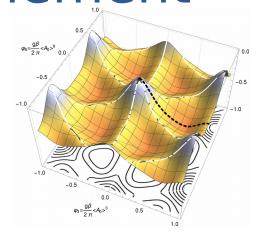
$$\bar{\varphi}_3 = \frac{2}{3}$$

$$L(\bar{\varphi}_3, 0) = 0$$

- Pawlowski, Scherzer, Strodthoff, Wink in prep.
- Herbst, Luecker, Pawlowski, (2015), 1510.03830
- Fister, Pawlowski, Phys.Rev. D88 045010 (2013)
- Braun, Gies, Pawlowski, Phys.Lett. B684 (2010)


Order parameters:

 $ar{arphi}_3$ most easily computed in $L(\langle A_0
angle)$ functional methods


 $\langle L(A_0) \rangle$ computed on the lattice; now also in the FRG

$$\langle L(A_0) \rangle \le L(\langle A_0 \rangle)$$

 $\langle L(A_0) \rangle = 0 \iff L(\langle A_0 \rangle) = 0$

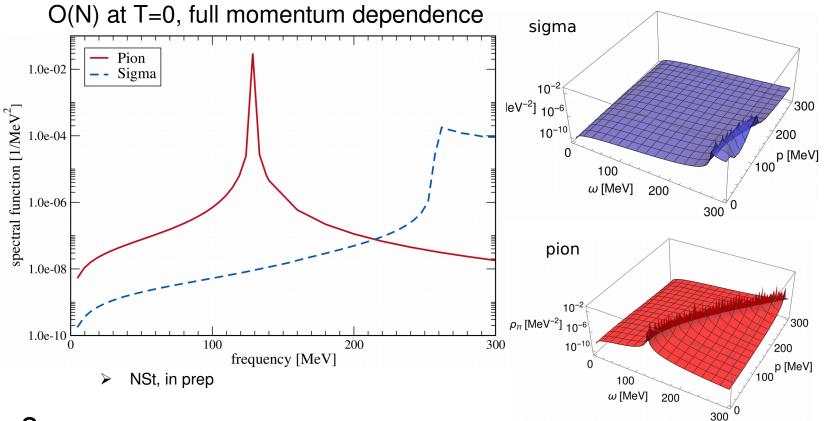
 $V(\langle A_0 \rangle)$ from YM propagators

Confined:

$$\bar{\varphi}_3 = \frac{2}{3}$$

$$L(\bar{\varphi}_3, 0) = 0$$

- Pawlowski, Scherzer, Strodthoff, Wink in prep.
- Herbst, Luecker, Pawlowski, (2015), 1510.03830
- Fister, Pawlowski, Phys. Rev. D88 045010 (2013)
- Braun, Gies, Pawlowski, Phys.Lett. B684 (2010)


Order parameters:

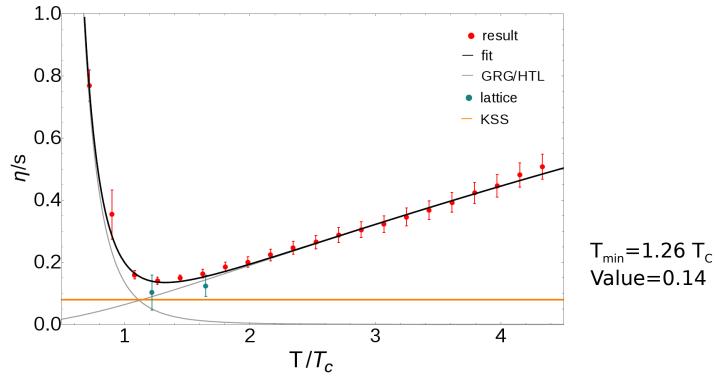
 $ar{arphi}_3$ most easily computed in $L(\langle A_0
angle)$ functional methods

 $\langle L(A_0) \rangle$ computed on the lattice; now also in the FRG

$$\langle L(A_0) \rangle \le L(\langle A_0 \rangle)$$

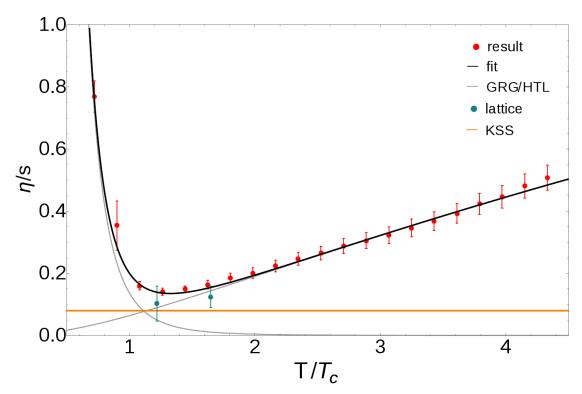
 $\langle L(A_0) \rangle = 0 \iff L(\langle A_0 \rangle) = 0$

Spectral Functions



Summary

- Directly calculated spectral functions
- ✓ Tested in scalar and Yukawa models at T,µ>0
- ✓ Allows the inclusion of full momentum dependence
- Quark & gluon spectral functions in full QCD

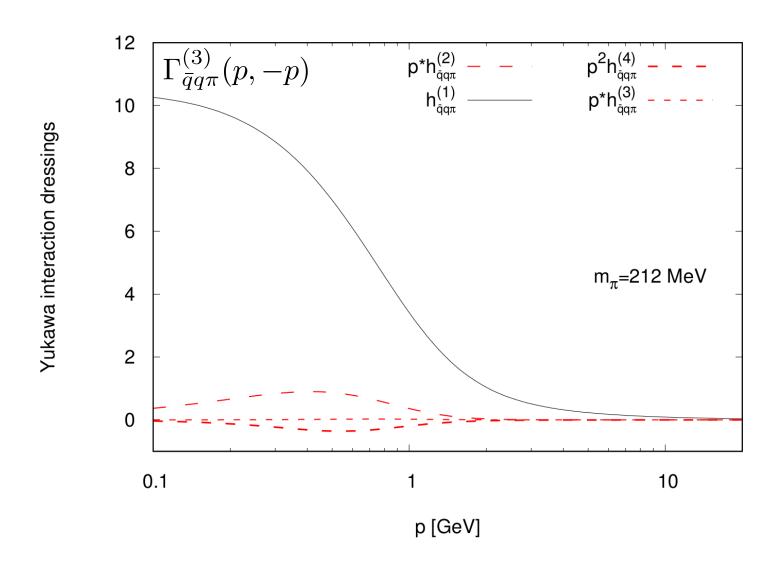

- NSt 1611.05036
 - Pawlowski, NSt
 - Phys.Rev. **D92** (2015) 9, 094009
 - Tripolt, NSt, von Smekal, Wambach Phys.Rev. **D89** (2014) 034010
- Kamikado, NSt, von Smekal, Wambach Eur.Phys.J. C74 (2014) 2806

η/s in Yang-Mills Theory

Christiansen, Haas, Pawlowski, NSt PRL **115** (2015) 11, 112002

η/s in Yang-Mills Theory

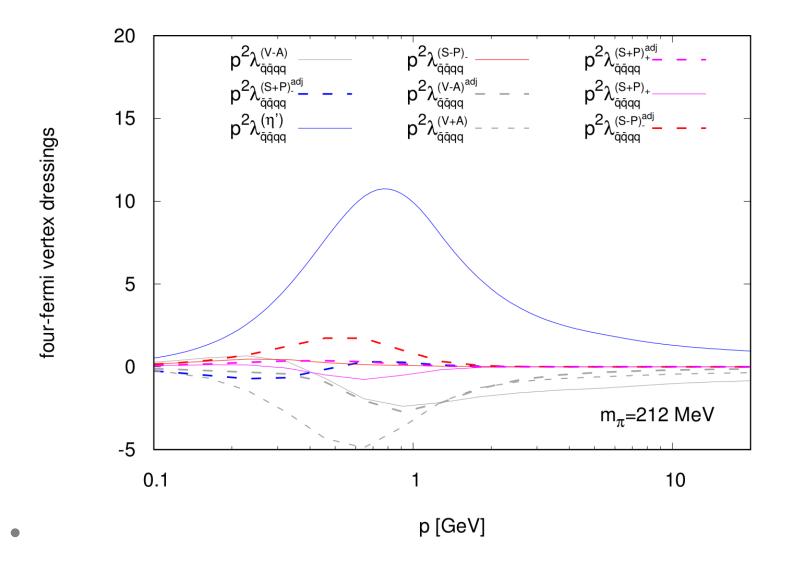
 T_{min} =1.26 T_{C} Value=0.14


Christiansen, Haas, Pawlowski, NSt PRL 115 (2015) 11, 112002

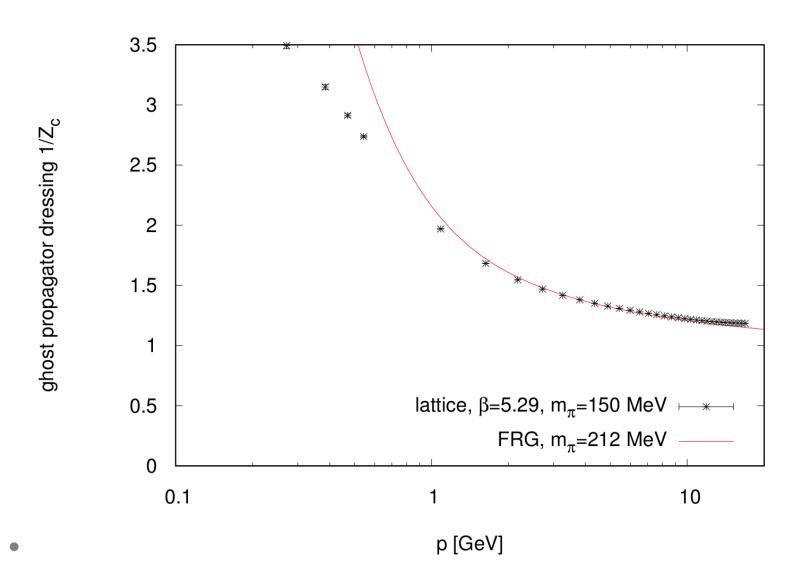
Direct sum:
$$\frac{\eta}{s}(T)=\frac{a}{\alpha_s(cT/T_c)^{\gamma}}+\frac{b}{(T/T_c)^{\delta}}$$

$$\gamma=1.6\quad a=0.15\quad b=0.14\quad c=0.66\quad \delta=5.1$$

High T: **consistent with HTL-resummed pert. theory** (fixing γ) supporting quasiparticle picture


Small T: algebraic decay glueball resonance gas

Quark-Meson Interactions


4-Fermi Interactions

$$\Gamma^{(4)}_{\bar{q}\bar{q}qq}(p,p,-p)$$

Ghost Propagator

$$\Gamma_{\bar{c}c}^{(2)}(p) = Z_c(p)p^2$$

